Altered expression of miRNAs and methylation of their promoters are correlated in neuroblastoma
نویسندگان
چکیده
Neuroblastoma is the most common human extracranial solid tumor during infancy. Involvement of several miRNAs in its pathogenesis has been ascertained. Interestingly, most of their encoding genes reside in hypermethylated genomic regions: thus, their tumor suppressor function is normally disallowed in these tumors. To date, the therapeutic role of the demethylating agent 5'-Aza-2 deoxycytidine (5'-AZA) and its effects on miRNAome modulation in neuroblastoma have not been satisfactorily explored. Starting from a high-throughput expression profiling of 754 miRNAs and based on a proper selection, we focused on miR-29a-3p, miR-34b-3p, miR-181c-5p and miR-517a-3p as candidate miRNAs for our analysis. They resulted downregulated in four neuroblastoma cell lines with respect to normal adrenal gland. MiRNAs 29a-3p and 34b-3p also resulted downregulated in vivo in a murine neuroblastoma progression model. Unlike the amount of methylation of their encoding gene promoters, all these miRNAs were significantly overexpressed following treatment with 5'-AZA. Transfection with candidate miRNAs mimics significantly decreased neuroblastoma cells proliferation rate. A lower expression of miR-181c was significantly associated to a worse overall survival in a public dataset of 498 neuroblastoma samples (http://r2.amc.nl). Our data strongly suggest that CDK6, DNMT3A, DNMT3B are targets of miR-29a-3p, while CCNE2 and E2F3 are targets of miR-34b-3p. Based on all these data, we propose that miR-29a-3p, miR-34b-3p, miR-181c-5p and miR-517a-3p are disallowed tumor suppressor genes in neuroblastoma and suggest them as new therapeutic targets in neuroblastoma.
منابع مشابه
Analyses of methylation status of CpG islands in promoters of miR-9 genes family in human gastric adenocarcinoma
In the recent years deregulation for microRNAs expression pattern have emerged as a possible molecular factor for carcinogenesis. It has been reported that the expression of miR-9 was down-regulated in human gastric adenocarcinoma. To figure out the molecular mechanism of this down regulation, the methylation status in promoters of miR-9 family loci were compared in the human gastric adenocarci...
متن کاملEffects of Trichostatin A on the Histone Deacetylases (HDACs), Intrinsic Apoptotic Pathway, p21/Waf1/Cip1, and p53 in Human Neuroblastoma, Glioblastoma, Hepatocellular Carcinoma, and Colon Cancer Cell Lines
Background: The aberrant and altered patterns of gene expression play an important role in the biology of cancer and tumorigenesis. DNA methylation and histone deacetylation are the most studied epigenetic mechanisms. Histone deacetylase inhibitors (HDACIs) such as valproic acid (VPA) and trichostatin A (TSA) are a group of anticancer compounds for the treatment of solid and hematological canc...
متن کاملPromoter Methylation and Gene Expression in Human CD34+ Stem Cells Derived Erythroid Lineage by MicroRNA
Background: Stem Cell differentiation is a process composed of vast variety of factors which are controlled by a network of certain mechanisms. This study aims to determine the possible role of DNA methylation, a potent regulator of VHL, ECAD and RUNX3 genes during Erythroid differentiation driven by miR-451. Materials and Methods: To determine the methylation status of promoters and the e...
متن کاملO6-Methylguanine-DNA Methyltransferase and ATP-Binding Cassette Membrane Transporter G2 Promotor Methylation: Can Predict the Response to Chemotherapy in Advanced Breast Cancer?
Background: ATP-binding cassette membrane transporter G2 (ABCG2) gene is one of transporter family and well characterized for their association with chemoresistance. Promoter methylation is a mechanism for regulation of gene expression. O6-Methyl guanine DNA methyl transferase (MGMT) gene plays a fundamental role in DNA repair. MGMT has the ability to remove alkyl adducts from DNA at the O6 pos...
متن کاملGene Expression Status and Methylation Pattern in Promoter of P15INK4b and P16INK4a in Cord Blood CD34+ Stem Cells
Objective(s): Stem cell differentiation into different cell lineages depends upon several factors, cell cycle control elements and intracellular signaling elements, including P15INK4b and P16INK4a genes. Epigenetics may be regarded as a control mechanism which is affected by these factors with respect to their promoter structure. Materials and Methods: The CD34 + cord blood s...
متن کامل